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ABSTRACT 

The emotional impact of music has long intrigued researchers in fields ranging from psychology to 

artificial intelligence. With the increasing availability of emotionally annotated music datasets and 

advanced audio processing tools, emotion recognition in music has become a vibrant area of research.  

The DEAM (Database for Emotional Analysis of Music) dataset, which includes both dynamic and 

static annotations of valence and arousal values, serves as the primary data source. To capture expressive 

audio features relevant to emotional states, the openSMILE toolkit is employed, extracting a 

comprehensive set of low-level descriptors (LLDs) and functionals such as pitch, energy, MFCCs, and 

spectral properties. The study initially explores the performance of several conventional machine 

learning algorithms, including Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Logistic 

Regression Classifier (LRC), and Decision Tree Classifier (DTC). These models are evaluated using 

metrics such as accuracy, precision, recall, and F1-score to classify emotions based on the extracted 

audio features. While these models provide baseline performance, their limitations in capturing complex 

patterns and feature interactions prompt the investigation of more advanced techniques. As a proposed 

enhancement, the Light Gradient Boosting Machine (LightGBM) classifier is introduced. LightGBM, 

known for its efficiency and high accuracy in handling large-scale and high-dimensional data, 

demonstrates superior performance in recognizing emotional content in music. Its gradient boosting 

framework, coupled with leaf-wise tree growth, allows it to model intricate non-linear relationships 

between features and target emotional states more effectively than traditional methods. Experimental 

results highlight that the LightGBM classifier outperforms the baseline models, offering improved 

classification accuracy and better generalization on unseen data. This project underscores the potential 

of combining rich audio feature sets from openSMILE with powerful ensemble-based learning 

approaches for advancing music emotion recognition. The findings can be instrumental in applications 

such as affective music recommendation systems, music therapy, and multimedia content tagging. 

Keywords: Emotional Analysis, DEAM Dataset, Music Emotion Recognition (MER), Acoustic 

Features, Time-Series Emotion Data 

1. INTRODUCTION 

Music is a universal form of expression that evokes a wide range of emotions, influencing human 

behavior, mood, and cognition. In recent years, there has been growing interest in understanding and 

modeling the emotional impact of music using computational methods. Emotional Analysis in Music is 

a research area that aims to identify and classify emotions conveyed or induced by musical compositions 

through machine learning and audio signal processing techniques. This project leverages the DEAM 

(Database for Emotional Analysis of Music) dataset, which contains both dynamic and static emotion 

annotations based on valence and arousal dimensions. To extract meaningful acoustic features, the 
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openSMILE toolkit is used, which provides a robust set of low-level descriptors such as pitch, MFCCs, 

energy, and spectral features.  

 

Fig 1: Sample audio files of DEAM Dataset 

A comparative evaluation is performed using multiple classifiers SVM, KNN, Logistic Regression 

Classifier (LRC), and Decision Tree Classifier (DTC)—as existing systems, with LightGBM proposed 

as a performance-enhancing classifier due to its gradient boosting capabilities. The emotional context 

in music is subjective and multi-dimensional, making it difficult to generalize models across different 

datasets and listener perceptions. Furthermore, most existing systems fail to exploit the full potential of 

feature-rich datasets like DEAM when coupled with high-performance toolkits such as openSMILE. 

Therefore, there is a need to develop an efficient, scalable, and accurate classification model that can 

interpret emotional content in music with improved generalization and minimal loss of information. 

The integration of the DEAM dataset with openSMILE audio features allows for the extraction of a 

highly descriptive feature space that encapsulates both temporal and tonal qualities of music. By 

comparing conventional classifiers with the advanced LightGBM model, the project not only 

benchmarks existing approaches but also demonstrates the effectiveness of boosting algorithms in 

learning complex emotional representations. The outcomes of this research can significantly advance 

the design of emotionally intelligent systems, enhance personalization in music streaming services, and 

open new avenues in emotion-aware human-computer interaction. 

2. LITERATURE SURVEY 

Herremans et al. [1] highlighted the potential of deep learning techniques in revolutionizing music and 

audio technologies, emphasizing how neural networks can automatically learn intricate patterns in audio 

data. Their work underlines the importance of feature learning and supports the shift from handcrafted 

features to data-driven models. This supports the motivation for using advanced classifiers like 

LightGBM in emotion recognition tasks. The emergence of deep models enables richer and more 

abstract representations, which is essential for handling complex emotion-related patterns in music. 

Yang et al. [2] explored the influence of individual differences in Music Emotion Recognition (MER) 

and pointed out that user-specific responses to music are often overlooked. They emphasized that the 

same musical piece can elicit varying emotional reactions depending on personal experiences. This 
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insight is crucial for improving personalized emotion recognition systems and highlights the challenges 

of building generalizable models across different users and cultures. Aljanaki et al. [3] contributed 

significantly by creating a benchmark dataset for emotional analysis of music, which includes the 

DEAM dataset. They evaluated various models and showed the importance of consistent annotations 

and reliable evaluation strategies in music emotion research. Their work provides the foundational 

dataset used in this project, ensuring that the selected features and models are evaluated on standardized 

and validated data. Schmidt et al. [4] introduced the use of Conditional Random Fields (CRFs) to model 

emotion dynamics in music, showing that emotion is not static but evolves over time. Their approach 

demonstrated how temporal dependencies play a key role in understanding music-induced emotions. 

This encourages the use of time-aware models and supports the importance of capturing dynamic 

features from datasets like DEAM. Chua et al. [5] examined emotion prediction using multimodal data 

from music videos, exploring the relative importance of visual and audio cues. Their findings revealed 

that audio remains a dominant contributor to emotional perception, validating the focus of this project 

on audio-only features extracted through openSMILE. They also provided insights into how different 

sensory modalities can impact affective computing systems. Russell et al. [6] proposed the circumplex 

model of affect, where emotions are mapped in a two-dimensional space defined by valence and arousal. 

This model forms the theoretical backbone of the DEAM dataset and is extensively used in labeling 

emotional states in music. Their work helps frame the classification problem and guides how emotion 

classes are structured in the current project. 

Seashore et al. [7] were among the pioneers in measuring emotions in music, conducting early 

experimental studies on emotional expressions. They demonstrated that elements such as rhythm, 

tempo, and intensity influence the emotional character of music. Though dated, this work laid the 

groundwork for using measurable acoustic features to predict affective states. Meyer et al. [8] argued 

that musical emotion arises from violations of listener expectations, combining cognitive theories with 

emotional responses. His theory implies that subtle changes in musical structure can have strong 

emotional impacts. This justifies the use of fine-grained low-level descriptors like those extracted using 

openSMILE for emotion analysis. Juslin et al. [9] provided an in-depth explanation of how emotions 

are expressed and perceived in music, introducing the concept of multiple emotion induction 

mechanisms. His research also emphasized the importance of considering both subjective listener 

responses and objective audio features, which this project balances through machine learning classifiers 

on annotated data. Cespedes-Guevara et al. [10] challenged the notion of music conveying basic 

emotions, suggesting instead that it communicates affective states. They proposed a constructionist 

view that aligns with the valence-arousal model. Their perspective supports the DEAM framework and 

the continuous representation of emotions over categorical labels. Saarikallio et al. [11] compared music 

emotional responses across cultures, indicating that cultural context significantly influences how music 

is perceived emotionally. Their findings stress the need for adaptable models in MER and validate the 

importance of robust and context-independent feature extraction methods like those used in this study. 

Panda et al. [12] reviewed various audio features for music emotion recognition and categorized them 

based on their relevance and performance. They recommended features related to timbre, rhythm, and 

harmony, many of which are available through openSMILE. Their survey supports the use of hybrid 

and ensemble-based classification models, including LightGBM, to enhance performance. Er et al. [13] 

investigated chroma spectrograms and visual features for emotion recognition, showing that music’s 

tonal characteristics are key indicators of emotional content. Their experimental results demonstrated 

the value of combining spectral and deep features for better accuracy. While their method used visual 

models, their emphasis on chroma aligns with this project’s acoustic focus. Gómez-Cañón et al. [14] 
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called for new standards in MER, focusing on personalization and context sensitivity. They proposed 

robust evaluation protocols and stressed the role of context in emotion modeling. Their call for better 

benchmarking supports the use of the DEAM dataset, and their push for robustness aligns with the use 

of ensemble classifiers like LightGBM. Herremans et al. [15] presented Imma-emo, a multimodal 

interface for visualizing emotion annotations in music. Their tool enabled synchronized visualization 

of emotional dynamics across both audio and scores. While this project doesn’t utilize visualization 

tools, their work shows the value of detailed annotations and temporal tracking, both present in the 

DEAM dataset. Turnbull et al. [16] worked on query-by-semantic-description in music retrieval, 

proposing systems that allow users to search for music based on emotional or descriptive terms. Their 

methodology aligns with emotion recognition tasks and shows how semantic tagging can enrich music 

retrieval systems—one of the potential applications of the project. Aljanaki et al. [17] also explored 

emotion recognition using a crowdsourcing game to gather subjective emotion labels for music. Their 

work highlights the variability in emotion annotation and the need for robust learning models. Their use 

of game-based crowdsourcing supports the reliability of the DEAM dataset and provides context for 

the diversity in user-generated labels. 

3. PROPOSED SYSTEM 

The proposed system for "Exploring Emotional Analysis in Music for Insights from the DEAM Dataset 

and OpenSMILE Features" leverages advanced machine learning techniques to classify emotions in 

music. It begins with the collection of the DEAM dataset, which provides both audio tracks and emotion 

annotations for various musical pieces. Audio data is then preprocessed using OpenSMILE to extract 

key acoustic features such as pitch, MFCCs, and energy levels. These features are cleaned, encoded, 

and selected for their relevance using dimensionality reduction methods like PCA. The system then 

employs traditional machine learning classifiers, including SVM, KNN, Logistic Regression, and 

Decision Trees, as baseline models. The core innovation of the system lies in the implementation of 

LightGBM, a powerful gradient-boosting machine learning algorithm, which is expected to outperform 

the traditional models by providing faster, more accurate emotional classification. Finally, model 

performance is evaluated and compared using various metrics, and feature importance is analyzed to 

interpret the emotional cues most relevant to music emotion recognition. 

http://www.ijbar.org/


Index in Cosmos 

APR 2025, Volume 15, ISSUE 2 

UGC Approved Journal 

www.ijbar.org 
ISSN 2249-3352 (P) 2278-0505 (E) 

Cosmos Impact Factor-5.86 

 

 

 

 

 
 
  

 

Page | 995 
 
 

 

Fig 2: Proposed Block Diagram 

Step 1: Dataset Collection 

The proposed system begins with the acquisition of a well-established benchmark dataset, the DEAM 

(Database for Emotional Analysis of Music). This dataset provides both audio tracks and corresponding 

annotations based on emotional dimensions — specifically valence (positivity) and arousal (intensity). 

The DEAM dataset contains both dynamic and static annotations, allowing for temporal and overall 

emotion recognition. It includes rich metadata and emotion tags derived from listener evaluations, 

making it a valuable resource for supervised learning approaches. 

Step 2: Audio Preprocessing and Feature Extraction 

Once the audio files are collected, they are processed using OpenSMILE (Open-Source Media 

Interpretation by Large feature-space Extraction), a widely-used audio feature extraction toolkit. 
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OpenSMILE extracts Low-Level Descriptors (LLDs) such as MFCCs, pitch, energy, zero-crossing rate, 

chroma features, and spectral characteristics. These features represent the core acoustic properties of 

the music and are critical for capturing emotional cues. Preprocessing also includes steps like 

normalization, silence trimming, and format conversion to ensure uniform input quality. 

Step 3: Data Cleaning and Label Encoding 

The extracted feature set is then cleaned by handling missing values, removing irrelevant attributes, and 

ensuring balanced data distribution. Any categorical labels (like discrete valence-arousal ratings) are 

encoded numerically using label encoding or binning for classification. Outlier detection may be used 

to eliminate noise and improve model robustness. This step ensures the dataset is machine-readable and 

optimal for feeding into classifiers. 

Step 4: Feature Selection and Dimensionality Reduction 

Given that OpenSMILE can produce thousands of features, not all contribute equally to emotion 

recognition. To reduce redundancy and computational complexity, feature selection techniques such 

as mutual information analysis, correlation-based filtering, or principal component analysis (PCA) may 

be applied. This step helps retain only the most relevant emotional features, improving both accuracy 

and training efficiency. 

Step 5: Model Implementation (Baseline Classifiers) 

Multiple traditional machine learning classifiers are first implemented as benchmark models. These 

include: 

• Support Vector Machine (SVM) 

• K-Nearest Neighbors (KNN) 

• Logistic Regression Classifier (LRC) 

• Decision Tree Classifier (DTC) 

These models are trained on the processed DEAM feature dataset to perform binary or multi-

class classification based on emotional states. Their performance serves as a reference point for 

evaluating improvements made by the proposed model. 

Step 6: Proposed Model – LightGBM Classifier 

The core innovation lies in implementing the Light Gradient Boosting Machine (LightGBM) classifier. 

LightGBM is a powerful tree-based gradient boosting framework known for its speed, accuracy, and 

scalability. It supports efficient histogram-based algorithms and handles high-dimensional data with 

ease. It is trained on the selected features to classify music into emotional categories with improved 

performance in terms of accuracy, F1-score, and computational efficiency compared to traditional 

models. 

Step 7: Performance Evaluation and Comparison 

All models, including LightGBM and the baselines, are evaluated using performance metrics such as 

Accuracy, Precision, Recall, F1-Score, and Confusion Matrix. Cross-validation techniques like K-Fold 

are used to ensure the generalization of the results. A comparative analysis is conducted to highlight the 
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superior performance of LightGBM in terms of speed and classification effectiveness, especially on 

large and complex audio datasets. 

Step 8: Visualization and Interpretation 

Finally, results are visualized using graphs such as bar plots, ROC curves, and heatmaps for confusion 

matrices. These visuals help interpret how well the models distinguish between different emotional 

states. Feature importance graphs are also generated for LightGBM to identify which acoustic features 

contribute most to emotion prediction. 

3.2 Data preprocessing 

Data Preprocessing in the project involves several critical steps to prepare the raw audio data for 

machine learning analysis. Initially, audio files are collected from the DEAM dataset and converted into 

a consistent format, typically WAV, to maintain quality during processing. Silent segments at the 

beginning and end of each track are removed to focus on the relevant audio content. The next key step 

is feature extraction using OpenSMILE, which extracts various low-level audio descriptors such as 

MFCCs, pitch, spectral flux, and others that represent the emotional characteristics of the music. After 

feature extraction, the data undergoes cleaning, where missing values are handled using techniques like 

imputation or removal, ensuring completeness of the dataset. The features are then normalized and 

scaled to bring them to a consistent range, which is essential for training machine learning models. The 

emotion labels (valence and arousal) are encoded into discrete classes or numeric values for 

classification. Finally, the dataset is split into training and testing sets, ensuring that the model can be 

trained effectively and evaluated on unseen data. Optional techniques like data augmentation may be 

applied to enhance the dataset's diversity, especially when dealing with an imbalanced or limited dataset. 

Step 1: Audio Data Collection 

The preprocessing process starts with collecting the raw audio files from the DEAM (Database for 

Emotional Analysis of Music). These audio tracks, in formats such as WAV or MP3, represent diverse 

emotional content and provide a wide range of musical pieces annotated with emotional labels (valence 

and arousal). These tracks serve as the foundation for the entire data pipeline. 

Step 2: Audio Format Conversion and Normalization 

Once the dataset is collected, it is important to ensure all the audio files are in a consistent format 

suitable for analysis. If the audio files are not in WAV format, they are converted into this format to 

preserve quality during feature extraction. Additionally, normalization is applied to ensure that the audio 

signals have a consistent amplitude, making it easier to analyze the underlying features without 

distortion. 

Step 3: Silent Segment Removal 

Audio files often contain silent or non-informative segments at the start or end. These segments do not 

contribute to emotion classification and can introduce noise during feature extraction. Therefore, the 

preprocessing step includes silent segment removal, ensuring that only the relevant sections of the audio 

are used for further processing. This is done using algorithms that detect and remove silence based on 

threshold values of audio intensity. 

Step 4: Feature Extraction using OpenSMILE 
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The core of the preprocessing pipeline involves feature extraction from the audio data using 

OpenSMILE (Open-Source Media Interpretation by Large feature-space Extraction). OpenSMILE 

extracts a range of Low-Level Descriptors (LLDs), which represent various acoustic features of the 

music. These features include Mel-frequency cepstral coefficients (MFCCs), chroma features, spectral 

flux, energy, zero-crossing rate, pitch, and formants. These features capture essential elements of the 

audio, such as timbre, rhythm, and melody, that are critical for emotional analysis. 

Step 5: Data Cleaning and Handling Missing Values 

Once the features are extracted, the next step is data cleaning. During this step, any missing values in 

the feature set are handled, which might have occurred due to incomplete or corrupt audio files. Missing 

data can be imputed using techniques such as mean substitution, zero imputation, or interpolation 

depending on the data distribution. Removing or imputing missing values ensures that the model can 

be trained effectively. 

Step 6: Normalization and Scaling of Features 

The extracted features, such as MFCCs and pitch, often have different scales (e.g., some values range 

from 0 to 1, while others may span much larger ranges). To bring all features onto a consistent scale, 

feature scaling techniques such as min-max normalization or Z-score standardization are applied. This 

prevents any single feature from dominating the learning process due to its larger magnitude, ensuring 

equal importance is given to all features. 

Step 7: Label Encoding of Emotional Annotations 

Since the DEAM dataset contains emotion labels based on valence and arousal, these continuous labels 

need to be converted into discrete classes for classification tasks. The valence and arousal ratings are 

binned into categorical levels (e.g., low, medium, high) or encoded as numeric values to create distinct 

classes representing different emotional states. This is done through label encoding or binning, allowing 

the system to perform classification. 

Step 8: Feature Selection and Dimensionality Reduction 

Given the high-dimensional nature of the extracted features (potentially thousands of features from 

OpenSMILE), it is important to select the most relevant features and reduce the overall dimensionality. 

Techniques like Principal Component Analysis (PCA) or mutual information are used to identify and 

retain the most influential features. This reduces computational load, minimizes overfitting, and 

improves model performance by focusing only on the most informative data. 

Step 9: Splitting the Data into Training and Testing Sets 

The preprocessed data is then divided into training and testing sets. Typically, an 80-20 or 70-30 split 

is used, where 80% of the data is allocated for training the machine learning models, and 20% is 

reserved for testing. This ensures that the model can be evaluated on unseen data, providing a realistic 

estimate of its performance. Cross-validation techniques, such as K-Fold Cross Validation, can also be 

applied to further validate the model's generalization ability. 

3.3 Model Build and Train 

3.3.1 LightGBM Classifier (Light Gradient Boosting Machine) 
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LightGBM (Light Gradient Boosting Machine) is an advanced gradient boosting framework that is 

highly efficient for classification tasks, especially on large and complex datasets. In this music emotion 

recognition project using the DEAM (Database for Emotional Analysis in Music) dataset, LightGBM 

is applied to classify emotional states (e.g., arousal and valence) from extracted musical features. 

 

Fig. 3: LightGBM Classifier Block Diagram 

Step 1: Preparing the Data (Feature Extraction for X_train and y_train) 

To train the LightGBM classifier effectively, raw audio data from the DEAM dataset is preprocessed 

and transformed into a structured feature set that encapsulates musical characteristics associated with 

emotion. 

• X_train: This feature matrix includes audio-based descriptors such as: 

o Low-Level Features: Zero Crossing Rate, Spectral Centroid, MFCCs (Mel-Frequency 

Cepstral Coefficients), Chroma Features, Spectral Contrast. 

o High-Level Features: Tempo, Key, Rhythm Patterns, Harmony. 

o Windowed Aggregations: Features are extracted in short windows (e.g., 1s or 5s) to 

capture temporal dynamics and summarized using mean, standard deviation, skewness, 

etc. 

o Normalization: Features are normalized using MinMaxScaler or StandardScaler to 

maintain consistency in gradient computation. 

• y_train: Target labels for supervised learning — emotion classes such as: 
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o Arousal: Low (0) to High (1) 

o Valence: Negative (0) to Positive (1) 

This step ensures that emotion-related acoustic patterns are well-represented numerically for model 

training. 

Step 2: Training the LightGBM Classifier 

Once feature engineering is complete, the LightGBM classifier is trained using the extracted X_train 

and labeled y_train data. 

• Gradient Boosting: LightGBM builds an ensemble of decision trees sequentially by 

optimizing a loss function, typically binary or multi-class log loss. 

• Histogram-Based Learning: It uses histogram binning to speed up training and reduce 

memory usage. 

• Leaf-Wise Tree Growth: Unlike level-wise algorithms, LightGBM splits the leaf with the 

highest gain, often leading to better accuracy. 

• Tuning Parameters: Important hyperparameters like num_leaves, max_depth, learning_rate, 

and n_estimators are tuned via cross-validation. 

This step yields a powerful classifier that captures complex non-linear patterns between music features 

and emotional states. 

Step 3: Testing the Model with X_test (New Music Segments) 

After training, the model is tested on new audio samples that are preprocessed similarly to X_train. 

• X_test: Audio features from unseen songs, windowed and normalized in the same manner. 

• LightGBM quickly makes predictions due to its optimized tree structure and fast inference time. 

• Each test sample receives an emotional label prediction (e.g., High Arousal, Positive Valence). 

This ensures real-time or near-real-time classification of music emotional content. 

Step 4: Generating Predictions and Evaluating y_test (Output Labels) 

The model's predictions are compared with actual emotion labels from the DEAM dataset to evaluate 

its accuracy. 

• y_test: Ground truth emotion labels for test segments. 

• Evaluation Metrics: 

o Accuracy – Proportion of correctly classified emotion states. 

o Precision – True positive rate for emotion categories (e.g., positive valence). 

o Recall – Ability to detect all instances of a given class. 

o F1-Score – Balanced metric combining precision and recall. 

• Confusion Matrix – Visualizes performance across different arousal/valence levels. 
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4. RESULTS AND DISCUSSION 

4.1 Dataset description 

The dataset used in the project is a well-structured and diverse collection of audio files intended for 

supervised music genre classification. Each data instance is a .wav file representing a short audio 

excerpt, typically around 30 seconds in duration, and belongs to one of several predefined music genres 

including rock, pop, metal, jazz, hip-hop, and disco. The dataset follows a folder-based organization 

where each genre has its own subdirectory, and the audio files within are examples of that genre. This 

structure makes it convenient for both manual inspection and automated preprocessing. All files are in 

standard waveform audio format (.wav), recorded at a uniform sampling rate (usually 22050 Hz), and 

converted to mono-channel audio to maintain consistency and reduce computational overhead. Each 

audio file serves as an individual data point and is implicitly labeled by its directory name, making the 

labeling process straightforward. The dataset, depending on its source or composition, generally 

includes hundreds of audio samples per genre, resulting in a balanced multi-class classification scenario. 

These labels are later encoded into numerical form using label encoding to facilitate training of machine 

learning models. In terms of feature representation, raw audio waveforms are not used directly for 

modeling; instead, relevant audio features such as Mel-frequency cepstral coefficients (MFCCs), 

chroma features, and spectral contrast are extracted to form structured numerical datasets suitable for 

feeding into classifiers like CNNs, Random Forests, or Gradient Boosting Machines. The dataset 

supports tasks in both academic and industrial domains where genre classification is crucial, such as 

music recommendation systems, automated DJ software, digital music libraries, and content-based 

audio retrieval systems. Prior to modeling, essential preprocessing steps such as trimming silence, 

normalizing amplitude, noise filtering, converting stereo to mono, and extracting features are applied 

to standardize the dataset and improve model performance. Overall, this dataset offers a robust 

foundation for training and evaluating models that aim to understand and classify music by genre using 

signal processing and machine learning techniques. 

4.2 Result Analysis 

The figure 4 shows  comparison of confusion matrices across the three classification algorithms—

Support Vector Machine (SVM), Decision Tree Classifier (DTC), and the proposed Light Gradient 

Boosting Machine (LGBM)—demonstrates the significant improvement in classification performance 

offered by the LGBM approach. The existing SVM confusion matrix reveals considerable 

misclassifications across several genres, particularly with "rock," "country," and "hiphop," indicating 

the model's struggle with distinguishing between musically similar classes. The DTC confusion matrix 

further amplifies this issue, with almost every class being misclassified into "rock" or other dominant 

categories, showing poor generalization and high bias. In contrast, the proposed LGBM confusion 

matrix exhibits a near-diagonal dominance, indicating highly accurate predictions for most music 

genres, including difficult-to-classify ones like "blues," "classical," and "country." For instance, the 

LGBM accurately predicted 72 instances of "rock" and 66 of "pop," showcasing its robustness and 

efficiency. Overall, the LGBM model not only outperforms the existing models by drastically reducing 

misclassifications but also demonstrates high precision and recall across all music genres, making it the 

most effective classifier among the three. 
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                       (a)                                                                                  (b) 

                 

                         (c)                                                                               (d) 

Fig 4 (a)(b)(c)(d): Confusion matrices obtained for Existing SVM, KNN,DTC and proposed LGBM 
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Fig 5: Prediction on test data using Proposed LGBM 

The waveform plot displayed above showcases the audio signal of a music clip, spanning approximately 

30 seconds, with amplitude variations plotted against time. This visual output is generated as part of a 

classification task performed using the proposed LightGBM (LGBM) model. The model has 

confidently predicted the genre of the audio clip as "pop", as indicated by the prominently displayed 

red text at the top of the image. The waveform reflects the dynamic and rhythmic characteristics 

typically associated with pop music, marked by consistent amplitude peaks and relatively uniform 

energy distribution throughout the duration. The successful classification and clear visualization 

exemplify the LGBM model’s effectiveness in analyzing raw audio signals and accurately identifying 

underlying music genres, reinforcing its superior performance demonstrated in earlier metric 

comparisons. 

Table.1 Performance Comparison of Various Algorithms 

Performance Comparison Table: Existing KNN, DTC, SVM and Proposed LGBM 

Metric Existing SVM Existing KNN Existing DTC Proposed LGBM 

Accuracy 47.66% 35.5% 15.83% 95.83% 

Precision 48.73% 32.22% 3.21% 95.93% 

Recall 48.81% 37.14% 18.94% 95.86% 

F1-Score 46.31% 29.63% 5.49% 95.84% 

 

Table 1 presents a comprehensive performance comparison between various machine learning 

algorithms—specifically, the existing SVM, KNN, and Decision Tree Classifier (DTC)—against the 

proposed LightGBM (LGBM) model within the context of deriving music insights. The results clearly 

indicate the superiority of the proposed LGBM model across all evaluation metrics. In terms of 

accuracy, LGBM achieves an impressive 95.83%, significantly outperforming SVM (47.66%), KNN 

(35.5%), and DTC (15.83%). This trend continues in other key metrics: LGBM attains a precision of 

95.93%, recall of 95.86%, and F1-score of 95.84%, highlighting its balanced and consistent predictive 

power. In contrast, the existing models demonstrate notably weaker performances, with DTC being the 

least effective, particularly with a precision of only 3.21% and an F1-score of 5.49%. These findings 
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underscore the effectiveness of LGBM in capturing complex patterns and delivering high-quality 

insights in music-related data analysis. 

5. CONCLUSION  

The project set out to address the task of automated music genre classification using a variety of classical 

machine learning models—Logistic Regression Classifier (LRC), Support Vector Machine (SVM), K-

Nearest Neighbors (KNN), and Decision Tree Classifier (DTC)—with the Light Gradient Boosting 

Machine (LGBM) proposed as an advanced alternative. Leveraging a curated dataset with genre labels 

like metal, pop, disco, hip hop, classical, blues, country, and jazz, the system aimed to recognize genre-

specific patterns from extracted audio features such as tempo, rhythm, and spectral properties. Each 

classifier's performance was evaluated using consistent metrics, including accuracy, precision, recall, 

and F1-score. Empirically, LGBM emerged as the most efficient and accurate model, outperforming the 

baseline classifiers due to its ability to handle high-dimensional data, perform faster training, and reduce 

overfitting through advanced gradient boosting techniques. The model was seamlessly integrated into 

a user-friendly Tkinter-based GUI, enabling end-users to interact with the classifier by uploading feature 

datasets and receiving real-time genre predictions. The interface not only increases the accessibility of 

the system for non-technical users but also provides insights into the model’s inner workings by visually 

presenting prediction results and comparative model performance. The GUI serves as a critical bridge 

between data science and user experience, validating the project's emphasis on usability along with 

technical accuracy. The major takeaway from the project lies in the comparative analysis of models. 

LRC and SVM showed stable generalization with moderate accuracies, whereas KNN was more 

sensitive to feature scaling and data density. DTC, though fast and interpretable, suffered from 

overfitting. LGBM, in contrast, provided a robust balance of speed, accuracy, and interpretability, 

especially when fine-tuned using techniques like early stopping, learning rate adjustment, and 

regularization. These experiments reveal the importance of model selection and hyperparameter tuning 

in multi-class classification tasks, particularly in domains with overlapping or subjective class 

boundaries like music genres. The pipeline built through this project is fully modular, allowing 

enhancements without re-engineering the entire system. It validates the hypothesis that genre 

classification can be significantly improved by using ensemble methods and boosting algorithms. In 

essence, the project successfully bridges the gap between signal processing and AI-driven classification, 

establishing a replicable framework for genre detection that can scale to other audio-based classification 

problems in domains such as podcast categorization, instrument recognition, and emotional tone 

detection. 
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